Increased transmitter release at excitatory synapses produced by direct activation of adenylate cyclase in rat hippocampal slices.
نویسندگان
چکیده
The field EPSP recorded in the CA1 region of rat hippocampal slices is potentiated by bath application of the direct adenylate cyclase activator forskolin (Chavez-Noriega and Stevens, 1992a). We have now used the whole-cell patch-clamp technique to analyze the effect of forskolin on evoked synaptic currents and on spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) recorded in rat hippocampal slices in order to determine the relative contributions of pre- and postsynaptic mechanisms to this increased synaptic strength. Application of 50 microM forskolin in the presence of 3-isobutyl-1-methylxanthine (IBMX; a phosphodiesterase inhibitor) enhanced the evoked EPSC (eEPSC) peak amplitude to 230 +/- 43% of control (n = 13). No significant change in sEPSC or in mEPSC amplitude was detected after forskolin addition (106 +/- 7%, n = 9), indicating that postsynaptic receptor sensitivity at synaptic junctions is not greatly affected. In contrast, a large increase in sEPSC and mEPSC frequency was noted in all cells (299 +/- 81%). Following forskolin application, the amplitude distribution of evoked synaptic currents shifted to larger values, but more significantly, a sharp decrease in failure rate was produced in all cells tested. Also, a significant correlation was found between the potentiation produced by forskolin in IBMX on the eEPSC and the ratio of the squared coefficient of variation (CV = SD/mean). Finally, a quantal analysis of four cells was consistent with the hypothesis that transmitter release was increased by forskolin/IBMX with, if anything, a concomitant decrease in quantal size. Together, these observations indicate that presynaptic mechanisms significantly contribute to the enhancement produced by this diterpene.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Presynaptic kainate receptor facilitation of glutamate release involves protein kinase A in the rat hippocampus.
We have explored the mechanisms involved in the facilitation of glutamate release mediated by the activation of kainate receptors in the rat hippocampus using isolated nerve terminal (synaptosome) and slice preparations. In hippocampal nerve terminals, kainate (KA) produced an increase of glutamate release at concentrations of agonist ranging from 10 to 1000 microm. In hippocampal slices, KA at...
متن کاملDepression of release by mGluR8 alters Ca2+ dependence of release machinery.
The ubiquitous presynaptic metabotropic glutamate receptors (mGluRs) are generally believed to primarily inhibit synaptic transmission through blockade of Ca(2+) entry. Here, we analyzed how mGluR8 achieves a nearly complete inhibition of glutamate release at hippocampal synapses. Surprisingly, presynaptic Ca(2+) imaging and miniature excitatory postsynaptic current recordings showed that mGluR...
متن کاملPACAP-38 enhances excitatory synaptic transmission in the rat hippocampal CA1 region.
Specific receptors for pituitary adenylate cyclase-activating polypeptide (PACAP), a novel peptide with neuroregulatory and neurotrophic functions, have been identified recently in different brain regions, including the hippocampus. In this study, we examined the effects of PACAP-38 on the excitatory postsynaptic field potentials (fEPSPs) evoked at the Schaffer collateral-CA1 synapses. Brief ba...
متن کاملCannabinoids inhibit the formation of new synapses between hippocampal neurons in culture.
The principal psychoactive ingredient in marijuana, Delta(9)-tetrahydrocannabinol, has been shown to inhibit adenylyl cyclase activity in vitro and can lead to impairment of memory in vivo. cAMP-induced changes in synaptic plasticity are thought to underlie memory formation. We examined the effects of cannabinoid receptor agonists on forskolin-induced formation of new synapses between rat hippo...
متن کاملDifferential actions of PKA and PKC in the regulation of glutamate release by group III mGluRs in the entorhinal cortex.
In a previous study we showed that activation of a presynaptically located metabotropic glutamate receptor (mGluR) with pharmacological properties of mGluR4a causes a facilitation of glutamate release in layer V of the rat entorhinal cortex (EC) in vitro. In the present study we have begun to investigate the intracellular coupling linking the receptor to transmitter release. We recorded spontan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 1 شماره
صفحات -
تاریخ انتشار 1994